2023-11-04 13:06:49 -06:00

574 lines
19 KiB
TypeScript

export type Frame = {
x: number;
y: number;
width: number;
height: number;
hasLocalPalette: boolean;
paletteOffset: number | null;
paletteSize: number | null;
dataOffset: number;
dataLength: number;
transparentIndex: number | null;
interlaced: boolean;
delay: number;
disposal: number;
};
/**
* @classdesc This class is a TS refactoring of 'omggif's GifReader constructor, I simply copy-pasta'd it to be able to include using a deno bundler since they currently do not work properly with npm packages. Due to this, if anything doesn't work, do NOT contact the original author for issues with this class
* @author original - Dean McNamee <dean@gmail.com>
* @author refactor - Emma Short <emma@cyborggrizzly.com>
*/
export class GifReader {
private buf: Uint8Array;
private p: number;
public width: number;
public height: number;
private globalPaletteOffset: number | null;
private globalPaletteSize: number | null;
private frames: Frame[];
private loopCountValue: number | null;
constructor(buf: Uint8Array) {
this.buf = buf;
this.p = 0;
this.width = 0;
this.height = 0;
this.globalPaletteOffset = null;
this.globalPaletteSize = null;
this.frames = [];
this.loopCountValue = null;
this.parseHeader();
this.parseFrames();
}
public numFrames(): number {
return this.frames.length;
}
public loopCount(): number | null {
return this.loopCountValue;
}
public frameInfo(frameNum: number): Frame {
if (frameNum < 0 || frameNum >= this.frames.length) {
throw new Error("Frame index out of range.");
}
return this.frames[frameNum];
}
public decodeAndBlitFrameBGRA(
frameNum: number,
pixels: Uint8ClampedArray,
): void {
const frame = this.frameInfo(frameNum);
const numPixels = frame.width * frame.height;
const indexStream = new Uint8Array(numPixels); // At most 8-bit indices.
GifReaderLZWOutputIndexStream(
this.buf,
frame.dataOffset,
indexStream,
numPixels,
);
const paletteOffset = frame.paletteOffset;
let trans = frame.transparentIndex;
if (trans === null) trans = 256;
// We are possibly just blitting to a portion of the entire frame.
// That is a subRect within the frameRect, so the additional pixels
// must be skipped over after we finished a scanline.
const frameWidth = frame.width;
const frameStride = this.width - frameWidth;
let xLeft = frameWidth; // Number of subRect pixels left in scanline.
// Output index of the top left corner of the subRect.
const opBeg = ((frame.y * this.width) + frame.x) * 4;
// Output index of what would be the left edge of the subRect, one row
// below it, i.e. the index at which an interlace pass should wrap.
const opEnd = ((frame.y + frame.height) * this.width + frame.x) * 4;
let op = opBeg;
let scanStride = frameStride * 4;
// Use scanStride to skip past the rows when interlacing. This is skipping
// 7 rows for the first two passes, then 3 then 1.
if (frame.interlaced === true) {
scanStride += this.width * 4 * 7; // Pass 1.
}
let interlaceSkip = 8; // Tracking the row interval in the current pass.
for (let i = 0, il = indexStream.length; i < il; ++i) {
const index = indexStream[i];
if (xLeft === 0) { // Beginning of new scan line
op += scanStride;
xLeft = frameWidth;
if (op >= opEnd) { // Catch the wrap to switch passes when interlacing.
scanStride = frameStride * 4 + this.width * 4 * (interlaceSkip - 1);
// interlaceSkip / 2 * 4 is interlaceSkip << 1.
op = opBeg + (frameWidth + frameStride) * (interlaceSkip << 1);
interlaceSkip >>= 1;
}
}
if (index === trans) {
op += 4;
} else {
const r = this.buf[(paletteOffset || 0) + index * 3];
const g = this.buf[(paletteOffset || 0) + index * 3 + 1];
const b = this.buf[(paletteOffset || 0) + index * 3 + 2];
pixels[op++] = b;
pixels[op++] = g;
pixels[op++] = r;
pixels[op++] = 255;
}
--xLeft;
}
}
public decodeAndBlitFrameRGBA(
frameNum: number,
pixels: Uint8ClampedArray,
): void {
const frame = this.frameInfo(frameNum);
const numPixels = frame.width * frame.height;
const indexStream = new Uint8Array(numPixels); // At most 8-bit indices.
GifReaderLZWOutputIndexStream(
this.buf,
frame.dataOffset,
indexStream,
numPixels,
);
// debugger;
const paletteOffset = frame.paletteOffset;
let trans = frame.transparentIndex;
if (trans === null) trans = 256;
// We are possibly just blitting to a portion of the entire frame.
// That is a subRect within the frameRect, so the additional pixels
// must be skipped over after we finished a scanline.
const frameWidth = frame.width;
const frameStride = this.width - frameWidth;
let xLeft = frameWidth; // Number of subRect pixels left in scanline.
// Output index of the top left corner of the subRect.
const opBeg = ((frame.y * this.width) + frame.x) * 4;
// Output index of what would be the left edge of the subRect, one row
// below it, i.e. the index at which an interlace pass should wrap.
const opEnd = ((frame.y + frame.height) * this.width + frame.x) * 4;
let op = opBeg;
let scanStride = frameStride * 4;
// Use scanStride to skip past the rows when interlacing. This is skipping
// 7 rows for the first two passes, then 3 then 1.
if (frame.interlaced === true) {
scanStride += this.width * 4 * 7; // Pass 1.
}
let interlaceSkip = 8; // Tracking the row interval in the current pass.
for (let i = 0, il = indexStream.length; i < il; ++i) {
const index = indexStream[i];
if (xLeft === 0) { // Beginning of new scan line
op += scanStride;
xLeft = frameWidth;
if (op >= opEnd) { // Catch the wrap to switch passes when interlacing.
scanStride = frameStride * 4 + this.width * 4 * (interlaceSkip - 1);
// interlaceSkip / 2 * 4 is interlaceSkip << 1.
op = opBeg + (frameWidth + frameStride) * (interlaceSkip << 1);
interlaceSkip >>= 1;
}
}
if (index === trans) {
op += 4;
} else {
const rI = (paletteOffset || 0) + index * 3;
const r = this.buf[rI];
const g = this.buf[rI + 1];
const b = this.buf[rI + 2];
pixels[op++] = r;
pixels[op++] = g;
pixels[op++] = b;
pixels[op++] = 255;
}
--xLeft;
}
}
// Additional private or public methods should be implemented below
private parseHeader(): void {
// Parse the GIF file header
if (
this.buf[this.p++] !== 0x47 || this.buf[this.p++] !== 0x49 ||
this.buf[this.p++] !== 0x46 ||
this.buf[this.p++] !== 0x38 || (this.buf[this.p++] + 1 & 0xfd) !== 0x38 ||
this.buf[this.p++] !== 0x61
) {
throw new Error("Invalid GIF 87a/89a header.");
}
}
private parseLogicalScreenDescriptor(): void {
// Parse the Logical Screen Descriptor block
}
private parseGlobalColorTable(): void {
// Parse the Global Color Table block if it exists
}
private parseFrames(): void {
const width = this.buf[this.p++] | this.buf[this.p++] << 8;
const height = this.buf[this.p++] | this.buf[this.p++] << 8;
const pf0 = this.buf[this.p++]; // <Packed Fields>.
const global_palette_flag = pf0 >> 7;
const num_global_colors_pow2 = pf0 & 0x7;
const num_global_colors = 1 << (num_global_colors_pow2 + 1);
const background = this.buf[this.p++];
this.buf[this.p++]; // Pixel aspect ratio (unused?).
let global_palette_offset = null;
let global_palette_size = null;
if (global_palette_flag) {
global_palette_offset = this.p;
global_palette_size = num_global_colors;
this.p += num_global_colors * 3; // Seek past palette.
}
let no_eof = true;
const frames = [];
let delay = 0;
let transparentIndex = null;
let disposal = 0; // 0 - No disposal specified.
let loopCount = null;
this.width = width;
this.height = height;
while (no_eof && this.p < this.buf.length) {
switch (this.buf[this.p++]) {
case 0x21: // Graphics Control Extension Block
switch (this.buf[this.p++]) {
case 0xff: // Application specific block
// Try if it's a Netscape block (with animation loop counter).
if (
this.buf[this.p] !== 0x0b || // 21 FF already read, check block size.
// NETSCAPE2.0
this.buf[this.p + 1] == 0x4e && this.buf[this.p + 2] == 0x45 &&
this.buf[this.p + 3] == 0x54 &&
this.buf[this.p + 4] == 0x53 &&
this.buf[this.p + 5] == 0x43 &&
this.buf[this.p + 6] == 0x41 &&
this.buf[this.p + 7] == 0x50 &&
this.buf[this.p + 8] == 0x45 &&
this.buf[this.p + 9] == 0x32 &&
this.buf[this.p + 10] == 0x2e &&
this.buf[this.p + 11] == 0x30 &&
// Sub-block
this.buf[this.p + 12] == 0x03 &&
this.buf[this.p + 13] == 0x01 && this.buf[this.p + 16] == 0
) {
this.p += 14;
loopCount = this.buf[this.p++] | this.buf[this.p++] << 8;
this.p++; // Skip terminator.
} else { // We don't know what it is, just try to get past it.
this.p += 12;
while (true) { // Seek through subblocks.
const block_size = this.buf[this.p++];
// Bad block size (ex: undefined from an out of bounds read).
if (!(block_size >= 0)) throw Error("Invalid block size");
if (block_size === 0) break; // 0 size is terminator
this.p += block_size;
}
}
break;
case 0xf9: { // Graphics Control Extension
if (this.buf[this.p++] !== 0x4 || this.buf[this.p + 4] !== 0) {
throw new Error("Invalid graphics extension block.");
}
const pf1 = this.buf[this.p++];
delay = this.buf[this.p++] | this.buf[this.p++] << 8;
transparentIndex = this.buf[this.p++];
if ((pf1 & 1) === 0) transparentIndex = null;
disposal = pf1 >> 2 & 0x7;
this.p++; // Skip terminator.
break;
}
// Plain Text Extension could be present and we just want to be able
// to parse past it. It follows the block structure of the comment
// extension enough to reuse the path to skip through the blocks.
case 0x01: // Plain Text Extension (fallthrough to Comment Extension)
case 0xfe: // Comment Extension.
while (true) { // Seek through subblocks.
const block_size = this.buf[this.p++];
// Bad block size (ex: undefined from an out of bounds read).
if (!(block_size >= 0)) throw Error("Invalid block size");
if (block_size === 0) break; // 0 size is terminator
this.p += block_size;
}
break;
default:
throw new Error(
"Unknown graphic control label: 0x" +
this.buf[this.p - 1].toString(16),
);
}
break;
case 0x2c: { // Image Descriptor.
const x = this.buf[this.p++] | this.buf[this.p++] << 8;
const y = this.buf[this.p++] | this.buf[this.p++] << 8;
const w = this.buf[this.p++] | this.buf[this.p++] << 8;
const h = this.buf[this.p++] | this.buf[this.p++] << 8;
const pf2 = this.buf[this.p++];
const local_palette_flag = pf2 >> 7;
const interlace_flag = pf2 >> 6 & 1;
const num_local_colors_pow2 = pf2 & 0x7;
const num_local_colors = 1 << (num_local_colors_pow2 + 1);
let palette_offset = global_palette_offset;
let palette_size = global_palette_size;
let has_local_palette = false;
if (local_palette_flag) {
has_local_palette = true;
palette_offset = this.p; // Override with local palette.
palette_size = num_local_colors;
this.p += num_local_colors * 3; // Seek past palette.
}
const data_offset = this.p;
this.p++; // codeSize
while (true) {
const block_size = this.buf[this.p++];
// Bad block size (ex: undefined from an out of bounds read).
if (!(block_size >= 0)) throw Error("Invalid block size");
if (block_size === 0) break; // 0 size is terminator
this.p += block_size;
}
this.frames.push({
x,
y,
width: w,
height: h,
hasLocalPalette: has_local_palette,
paletteOffset: palette_offset,
paletteSize: palette_size,
dataOffset: data_offset,
dataLength: this.p - data_offset,
transparentIndex: transparentIndex,
interlaced: !!interlace_flag,
delay: delay,
disposal: disposal,
});
break;
}
case 0x3b: // Trailer Marker (end of file).
no_eof = false;
break;
default:
throw new Error(
"Unknown gif block: 0x" + this.buf[this.p - 1].toString(16),
);
}
}
}
// private readSubBlocks(): string {
// // Read a series of sub-blocks
// return "";
// }
// private readBlockTerminator(): void {
// // Read a block terminator if necessary
// }
}
function GifReaderLZWOutputIndexStream(
codeStream: Uint8Array,
p: number,
output: Uint8Array,
outputLength: number,
) {
const minCodeSize = codeStream[p++];
const clear_code = 1 << minCodeSize;
const eoi_code = clear_code + 1;
let nextCode = eoi_code + 1;
let curCodeSize = minCodeSize + 1; // Number of bits per code.
// NOTE: This shares the same name as the encoder, but has a different
// meaning here. Here this masks each code coming from the code stream.
let codeMask = (1 << curCodeSize) - 1;
let curShift = 0;
let cur = 0;
let op = 0; // Output pointer.
let subBlockSize = codeStream[p++];
const codeTable = new Int32Array(4096); // Can be signed, we only use 20 bits.
let prevCode = null; // Track code-1.
while (true) {
// Read up to two bytes, making sure we always 12-bits for max sized code.
while (curShift < 16) {
if (subBlockSize === 0) break; // No more data to be read.
cur |= codeStream[p++] << curShift;
curShift += 8;
if (subBlockSize === 1) { // Never let it get to 0 to hold logic above.
subBlockSize = codeStream[p++]; // Next subBlock.
} else {
--subBlockSize;
}
}
if (curShift < curCodeSize) {
break;
}
const code = cur & codeMask;
cur >>= curCodeSize;
curShift -= curCodeSize;
if (code === clear_code) {
// We don't actually have to clear the table. This could be a good idea
// for greater error checking, but we don't really do any anyway. We
// will just track it with next_code and overwrite old entries.
nextCode = eoi_code + 1;
curCodeSize = minCodeSize + 1;
codeMask = (1 << curCodeSize) - 1;
// Don't update prev_code ?
prevCode = null;
continue;
} else if (code === eoi_code) {
break;
}
// We have a similar situation as the decoder, where we want to store
// variable length entries (code table entries), but we want to do in a
// faster manner than an array of arrays. The code below stores sort of a
// linked list within the code table, and then "chases" through it to
// construct the dictionary entries. When a new entry is created, just the
// last byte is stored, and the rest (prefix) of the entry is only
// referenced by its table entry. Then the code chases through the
// prefixes until it reaches a single byte code. We have to chase twice,
// first to compute the length, and then to actually copy the data to the
// output (backwards, since we know the length). The alternative would be
// storing something in an intermediate stack, but that doesn't make any
// more sense. I implemented an approach where it also stored the length
// in the code table, although it's a bit tricky because you run out of
// bits (12 + 12 + 8), but I didn't measure much improvements (the table
// entries are generally not the long). Even when I created benchmarks for
// very long table entries the complexity did not seem worth it.
// The code table stores the prefix entry in 12 bits and then the suffix
// byte in 8 bits, so each entry is 20 bits.
const chaseCode: number = code < nextCode ? code : prevCode as number;
// Chase what we will output, either {CODE} or {CODE-1}.
let chaseLength = 0;
let chase = chaseCode as number;
while (chase > clear_code) {
chase = codeTable[chase] >> 8;
++chaseLength;
}
const k = chase;
const op_end = op + chaseLength + (chaseCode !== code ? 1 : 0);
if (op_end > outputLength) {
console.log("Warning, gif stream longer than expected.");
return;
}
// Already have the first byte from the chase, might as well write it fast.
output[op++] = k;
op += chaseLength;
let b = op; // Track pointer, writing backwards.
if (chaseCode !== code) { // The case of emitting {CODE-1} + k.
output[op++] = k;
}
chase = chaseCode;
while (chaseLength--) {
chase = codeTable[chase];
output[--b] = chase & 0xff; // Write backwards.
chase >>= 8; // Pull down to the prefix code.
}
if (prevCode !== null && nextCode < 4096) {
codeTable[nextCode++] = prevCode << 8 | k;
if (nextCode >= codeMask + 1 && curCodeSize < 12) {
++curCodeSize;
codeMask = codeMask << 1 | 1;
}
}
prevCode = code;
}
if (op !== outputLength) {
console.log("Warning, gif stream shorter than expected.");
}
return output;
}
export function handleGIF(
data: Uint8Array,
) {
const framesBase64: ({ canvas: HTMLCanvasElement } & Frame)[] = [];
const reader = new GifReader(data);
for (let i = 0; i < reader.numFrames(); i++) {
const frameData = reader.frameInfo(i);
// const buf = new Uint8Array(frameData.width * frameData.height * 4);
const canvas = document.createElement("canvas");
canvas.width = reader.width;
canvas.height = reader.height;
const ctx = canvas.getContext("2d")!;
const imageData = ctx.createImageData(reader.width, reader.height);
reader.decodeAndBlitFrameRGBA(i, imageData.data);
ctx.putImageData(
imageData,
0,
0,
frameData.x,
frameData.y,
frameData.width,
frameData.height,
);
framesBase64.push({ ...frameData, canvas });
}
return {
w: reader.width,
h: reader.height,
frames: framesBase64,
};
}