148 lines
4.2 KiB
TypeScript
148 lines
4.2 KiB
TypeScript
import { Doodler, Vector } from "@bearmetal/doodler";
|
|
import { getContextItem } from "../lib/context.ts";
|
|
import { Spline, TrackSegment } from "../track/system.ts";
|
|
|
|
export class DotFollower {
|
|
position: Vector;
|
|
velocity: Vector;
|
|
acceleration: Vector;
|
|
maxSpeed: number;
|
|
maxForce: number;
|
|
_trailingPoint: number;
|
|
protected _leadingPoint: number;
|
|
|
|
path: Spline<TrackSegment>;
|
|
|
|
get trailingPoint() {
|
|
const desired = this.velocity.copy();
|
|
desired.normalize();
|
|
desired.mult(-this._trailingPoint);
|
|
|
|
return Vector.add(this.position, desired);
|
|
}
|
|
|
|
constructor(path: Spline<TrackSegment>, pos: Vector) {
|
|
this.path = path;
|
|
this.position = pos;
|
|
this.velocity = new Vector();
|
|
this.acceleration = new Vector();
|
|
this.maxSpeed = 3;
|
|
this.maxForce = 0.3;
|
|
|
|
this._trailingPoint = 0;
|
|
this._leadingPoint = 0;
|
|
|
|
this.init();
|
|
}
|
|
|
|
init() {
|
|
}
|
|
|
|
move(dt: number) {
|
|
dt *= 10;
|
|
const force = calculatePathForce(this, this.path.points);
|
|
this.applyForce(force.mult(dt));
|
|
this.velocity.limit(this.maxSpeed);
|
|
this.acceleration.limit(this.maxForce);
|
|
this.velocity.add(this.acceleration.copy().mult(dt));
|
|
this.position.add(this.velocity.copy().mult(dt));
|
|
this.edges();
|
|
}
|
|
|
|
edges() {
|
|
const doodler = getContextItem<Doodler>("doodler");
|
|
|
|
if (this.position.x > doodler.width) this.position.x = 0;
|
|
if (this.position.y > doodler.height) this.position.y = 0;
|
|
if (this.position.x < 0) this.position.x = doodler.width;
|
|
if (this.position.y < 0) this.position.y = doodler.height;
|
|
}
|
|
|
|
draw() {
|
|
const doodler = getContextItem<Doodler>("doodler");
|
|
doodler.drawRotated(this.position, this.velocity.heading() || 0, () => {
|
|
doodler.fillCenteredRect(this.position, 20, 20, { fillColor: "white" });
|
|
});
|
|
for (const point of this.path.points) {
|
|
doodler.drawCircle(point, 4, { color: "red", weight: 3 });
|
|
}
|
|
}
|
|
|
|
applyForce(force: Vector) {
|
|
this.velocity.add(force);
|
|
}
|
|
|
|
static edges(point: Vector, width: number, height: number) {
|
|
if (point.x > width) point.x = 0;
|
|
if (point.y > height) point.y = 0;
|
|
if (point.x < 0) point.x = width;
|
|
if (point.y < 0) point.y = height;
|
|
}
|
|
}
|
|
|
|
function closestPointOnLineSegment(p: Vector, a: Vector, b: Vector): Vector {
|
|
// Vector AB
|
|
// const AB = { x: b.x - a.x, y: b.y - a.y };
|
|
const AB = Vector.sub(b, a);
|
|
// Vector AP
|
|
// const AP = { x: p.x - a.x, y: p.y - a.y };
|
|
const AP = Vector.sub(p, a);
|
|
// Dot product of AP and AB
|
|
// const AB_AB = AB.x * AB.x + AB.y * AB.y;
|
|
const AB_AB = Vector.dot(AB, AB);
|
|
// const AP_AB = AP.x * AB.x + AP.y * AB.y;
|
|
const AP_AB = Vector.dot(AP, AB);
|
|
// Project AP onto AB
|
|
const t = AP_AB / AB_AB;
|
|
|
|
// Clamp t to the range [0, 1] to restrict to the segment
|
|
const tClamped = Math.max(0, Math.min(1, t));
|
|
|
|
// Closest point on the segment
|
|
return new Vector({ x: a.x + AB.x * tClamped, y: a.y + AB.y * tClamped });
|
|
}
|
|
|
|
function calculatePathForce(f: DotFollower, path: Vector[]) {
|
|
let closestPoint: Vector = path[0];
|
|
let minDistance = Infinity;
|
|
|
|
// Loop through each segment to find the closest point on the path
|
|
for (let i = 0; i < path.length - 1; i++) {
|
|
const segmentStart = path[i];
|
|
const segmentEnd = path[i + 1];
|
|
|
|
// Find the closest point on the segment
|
|
const closest = closestPointOnLineSegment(
|
|
f.position,
|
|
segmentStart,
|
|
segmentEnd,
|
|
);
|
|
|
|
// Calculate the distance from the follower to the closest point
|
|
// const distance = Math.sqrt(
|
|
// Math.pow(follower.position.x - closest.x, 2) +
|
|
// Math.pow(follower.position.y - closest.y, 2),
|
|
// );
|
|
|
|
const distance = Vector.dist(f.position, closest);
|
|
|
|
// Track the closest point
|
|
if (distance < minDistance) {
|
|
minDistance = distance;
|
|
closestPoint = closest;
|
|
}
|
|
}
|
|
|
|
// Calculate the force to apply toward the closest point
|
|
// const force = {
|
|
// x: closestPoint.x - f.position.x,
|
|
// y: closestPoint.y - f.position.y,
|
|
// };
|
|
const force = Vector.sub(closestPoint, f.position);
|
|
|
|
// Normalize the force and apply a magnitude (this will depend on your desired strength)
|
|
const magnitude = 100; // Adjust this based on your needs
|
|
force.setMag(magnitude);
|
|
return force;
|
|
}
|