trainsim/math/path.ts
2023-02-08 01:14:13 -07:00

226 lines
5.5 KiB
TypeScript

import { Vector } from "doodler";
export class ComplexPath {
points: Vector[] = [];
radius = 50;
ctx?: CanvasRenderingContext2D;
constructor(points?: Vector[]) {
points && (this.points = points);
}
setContext(ctx: CanvasRenderingContext2D) {
this.ctx = ctx;
}
draw() {
if (!this.ctx || !this.points.length) return;
const ctx = this.ctx;
ctx.save();
ctx.lineWidth = 2;
ctx.strokeStyle = 'white';
ctx.setLineDash([21, 6])
let last = this.points[this.points.length - 1]
for (const point of this.points) {
ctx.beginPath();
ctx.moveTo(last.x, last.y);
ctx.lineTo(point.x, point.y);
ctx.stroke();
last = point;
}
ctx.restore();
}
}
export class PathSegment {
points: [Vector, Vector, Vector, Vector]
ctx?: CanvasRenderingContext2D;
length: number;
constructor(points: [Vector, Vector, Vector, Vector]) {
this.points = points;
this.length = this.calculateApproxLength(100);
}
setContext(ctx: CanvasRenderingContext2D) {
this.ctx = ctx;
}
draw() {
const [a, b, c, d] = this.points;
doodler.drawBezier(a, b, c, d, {
strokeColor: '#ffffff50'
})
// if (!this.ctx) return;
// const ctx = this.ctx;
// ctx.save();
// ctx.beginPath();
// ctx.moveTo(this.points[0].x, this.points[0].y);
// ctx.bezierCurveTo(
// this.points[1].x,
// this.points[1].y,
// this.points[2].x,
// this.points[2].y,
// this.points[3].x,
// this.points[3].y,
// );
// ctx.strokeStyle = '#ffffff50';
// ctx.lineWidth = 2;
// ctx.stroke();
// ctx.restore();
}
getPointAtT(t: number) {
const [a, b, c, d] = this.points;
const res = a.copy();
res.add(Vector.add(a.copy().mult(-3), b.copy().mult(3)).mult(t))
res.add(Vector.add(Vector.add(a.copy().mult(3), b.copy().mult(-6)), c.copy().mult(3)).mult(Math.pow(t, 2)));
res.add(Vector.add(Vector.add(a.copy().mult(-1), b.copy().mult(3)), Vector.add(c.copy().mult(-3), d.copy())).mult(Math.pow(t, 3)));
return res;
}
getClosestPoint(v: Vector): [Vector, number, number] {
const samples = 25;
const resolution = 1 / samples;
let closest = this.points[0];
let closestDistance = this.points[0].dist(v);
let closestT = 0;
for (let i = 0; i < samples; i++) {
const point = this.getPointAtT(i * resolution);
const distance = v.dist(point);
if (distance < closestDistance) {
closest = point;
closestDistance = distance;
closestT = i * resolution;
}
}
return [closest, closestDistance, closestT];
}
getPointsWithinRadius(v: Vector, r: number) {
const points: [number, PathSegment][] = [];
const samples = 25;
const resolution = 1 / samples;
for (let i = 0; i < samples; i++) {
const point = this.getPointAtT(i * resolution);
const distance = v.dist(point);
if (distance < r) {
points.push([i * resolution, this]);
}
}
return points
}
tangent(t: number) {
// dP(t) / dt = -3(1-t)^2 * P0 + 3(1-t)^2 * P1 - 6t(1-t) * P1 - 3t^2 * P2 + 6t(1-t) * P2 + 3t^2 * P3
const [a, b, c, d] = this.points;
const res = Vector.sub(b, a).mult(3 * Math.pow(1 - t, 2));
res.add(Vector.add(Vector.sub(c, b).mult(6 * (1 - t) * t), Vector.sub(d, c).mult(3 * Math.pow(t, 2))));
return res;
}
doesIntersectCircle(x: number, y: number, r: number) {
const v = new Vector(x, y);
const samples = 25;
const resolution = 1 / samples;
let distance = Infinity;
let t;
for (let i = 0; i < samples; i++) {
if (i !== samples - 1) {
const a = this.getPointAtT(i * resolution);
const b = this.getPointAtT((i + 1) * resolution);
const ac = Vector.sub(v, a);
const ab = Vector.sub(b, a);
const d = Vector.add(Vector.vectorProjection(ac, ab), a);
const ad = Vector.sub(d, a);
const k = Math.abs(ab.x) > Math.abs(ab.y) ? ad.x / ab.x : ad.y / ab.y;
let dist;
if (k <= 0.0) {
dist = Vector.hypot2(v, a)
} else if (k >= 1.0) {
dist = Vector.hypot2(v, b)
}
dist = Vector.hypot2(v, d)
if (dist < distance) {
distance = dist;
t = i * resolution;
}
}
}
if (distance < r) return t;
return false;
}
calculateApproxLength(resolution = 25) {
const stepSize = 1 / resolution;
const points: Vector[] = []
for (let i = 0; i <= resolution; i++) {
const current = stepSize * i;
points.push(this.getPointAtT(current))
}
return points.reduce((acc: { prev?: Vector, length: number }, cur) => {
const prev = acc.prev;
acc.prev = cur;
if (!prev) return acc;
acc.length += cur.dist(prev);
return acc;
}, { prev: undefined, length: 0 }).length
}
calculateEvenlySpacedPoints(spacing: number, resolution = 1) {
const points: Vector[] = []
points.push(this.points[0]);
let prev = points[0];
let distSinceLastEvenPoint = 0
let t = 0;
const div = Math.ceil(this.length * resolution * 10);
while (t < 1) {
t += 1 / div;
const point = this.getPointAtT(t);
distSinceLastEvenPoint += prev.dist(point);
if (distSinceLastEvenPoint >= spacing) {
const overshoot = distSinceLastEvenPoint - spacing;
const evenPoint = Vector.add(point, Vector.sub(point, prev).normalize().mult(overshoot))
distSinceLastEvenPoint = overshoot;
points.push(evenPoint);
prev = evenPoint;
}
prev = point;
}
return points;
}
}